The Linnaean Apostles: Daniel Solander

3 Solandra tridentata LINN 332a.2

Solandra tridentata (LINN 332.2) from the herbarium of the Linnean Society, London

In the last post I discussed one of Carl Linnaeus’s students, Peter Forsskål, who never returned from his expedition to the Near East.  Daniel Solander (1733-1782) traveled farther and also lived to study the fruits of his exploration.  He was born in Lapland and, not surprisingly, studied in Uppsala where he was considered Linnaeus’s favorite pupil.  When British botanists asked Linnaeus to send someone to England to boost the use of Linnaean taxonomy, Solander was chosen.  He left in 1760 and never again lived in Sweden.  At first, he spent time reorganizing the herbaria of wealthy patrons such as the Duchess of Portland and Peter Collinson, who was one of those who had encouraged Linnaeus to send an “apostle” to England.  He was influential in British botanical circles as a member of the Royal Society, a trustee of the newly formed British Museum, and a patron of the American nurseryman John Bartram.  Solander sent specimens from Collinson and others on to Linnaeus.  When the British Museum was looking for someone to care for the herbarium of Hans Sloane, the donor of the museum’s founding collection, Collinson asked Lord Bute, then Prime Minister, to suggest Solander to the King as the ideal choice (Rose, 2018).  This is a fascinating, though tiny, piece of history because all of the individuals involved were interested enough in plants that the care of a plant collection would be discussed at the highest government levels.

Solander began working at the museum in 1763 and set about giving the plants in the herbarium Linnaean names without disrupting the physical order of its 265 bound volumes.  This was a compromise that would allow those not familiar with the new system to still find plants in the collection using Sloane’s system, which was essentially an annotated copy of John Ray’s Historia Plantarum in which Sloane or his botanical curator had written the volume and folio numbers for each species, noting new species when necessary.  Solander began with the first volumes of the herbarium, those containing the collections Sloane had made while he served as physician to the Duke of Albemarle on the island of Jamaica in 1687-1688.  Among the 800 species were hundreds of new ones that Sloane described in his two volume Natural History of Jamaica (1702-1727).  Solander wrote the names on labels that he added to Sloane’s sheets, but retained the older labels, an approach that not been taken by many earlier botanists though later became the norm.

While at the museum, Solander began to receive visits from a young botanical enthusiast, Joseph Banks, heir to a large fortune who had attended but not graduated from the University of Oxford.  He supplied Solander with an unmarked copy of the Sloane Jamaica volumes to annotate.  This was a good way to keep track of the Jamaican species.  When Solander moved on to the rest of the collection, he used slips of paper to record the new names and crossreferenced them with the volume and folio numbers.  He also annotated a copy of Linnaeus’s Species Plantarum.  In this way, the collection was “modernized” without being rearranged.  This went on until 1768, when Solander took on a very different kind of challenge.

Banks had convinced the British Admiralty to make him part of the round-the-world expedition to be led by James Cook on the Endeavor.  It’s major aim, and the publicized one, was to observe the transit of Venus across the sun, which would take place on June 3, 1769.  However, Cook was also instructed to visit Australia, acquiring as much navigational and geographic information for future use in possible colonization (O’Brian, 1993).  Banks, at his own expense, put together a team to study natural history.  It included Solander, Herman Spöring of Finland as secretary, two artists, and two servants.  Banks paid to outfit the ship for his group as well as for scientific instruments and other supplies for preserving specimens and even for growing plants.  There is obviously a lot to this story, but for now I will stick to Solander and plants.

Apparently Banks and Solander made a good team.  They developed a system for dealing with the huge amount of material they collected, in all, about 30,000 plant specimens.  They would return to base each day, give the artist Sydney Parkinson the fresh material to sketch and make color notes, while they, with Spöring’s help, wrote up their notes.  The plants were pressed, though at times, as when they reached Australia, their system couldn’t keep up with collecting.  Plants weren’t drying fast enough, so the pair laid them out on deck on sails during the day.  Needless to say, this massive collection proved daunting to tackle for publication.  Banks and Solander worked on it for years, with engravings made of about 800 species from the Parkinson drawings.  The artist hadn’t survived the voyage, but he did produce 900 complete watercolors and as well as hundreds of sketches.  Unfortunately, Solander died in 1782 before the project was completed, and Banks seems to have given up first-hand work on botany after his death.  Instead, Banks became more involved in projects to promote botanical exploration as well as agriculture.  The Banks’ Florilegium wasn’t published until the 1980s in 34 massive volumes.  Solander did not publish much but he was obviously essential to the Endeavour mission, and perhaps even more importantly, to making the Sloane Herbarium a continuingly useful botanical resource.

References

O’Brian, P. (1993). Joseph Banks: A Life. Boston, MA: Godine.

Rose, E. D. (2018). Specimens, slips and systems: Daniel Solander and the classification of nature at the world’s first public museum, 1753–1768. The British Journal for the History of Science, 5 (2), 1–33.

Advertisements

Linnaeus Beyond the Netherlands

4 Chelsea Garden

Chelsea Botanical Garden, London

This is the last of a series of posts about Carl Linnaeus’s three-year stay in the Netherlands and how it shaped his future career.  While there he had two opportunities to travel to other parts of Europe and meet leading botanists of the day.  It was while living on the estate of George Clifford at Hartekamp and working on cataloging his collection (see last post), that Linnaeus took time off for a month in England to look into what he had heard to be a vibrant botanical community there.  Clifford agreed to this hiatus and even financed it, with the stipulation that Linnaeus return with new plants for his estate.

Not surprisingly, Linnaeus first visited Hans Sloane, then an aged icon among collectors, who opened his herbarium to the Swede.  Jan Frederik Gronovius had already sent Sloane a copy of Linnaeus’s Systema Naturae, and Herman Boerhaave wrote a letter of introduction in which he put Linnaeus on a par with Sloane, describing them as “a pair of men whose equal is hardly to be found in all the world” (quoted in Blunt, 1971, p. 110).  Sloane didn’t quite see things that way and didn’t pay that much attention to Linnaeus who later described Sloane’s herbarium as disorganized.  His first meeting with Philip Miller, the head of the Chelsea Physic Garden, was also less than a success, but eventually Miller gave Linnaeus a good selection of plants to take back to Clifford, as well as herbarium specimens that William Houston had collected in Central America.

In London, Linnaeus met another key member of the botanical confederacy, Peter Collinson, who had already begun a long-term correspondence with John Bartram, the Philadelphia naturalist and nurseryman.  Over a 30-year period, Bartram sent a large array of specimens, seeds, and cuttings to Collinson, who in turn distributed them to a number of the leading gardeners of the day who were anxious to have the latest finds from North America.  Collinson got along well with Linnaeus, and they continued to correspond over the years, with Linnaeus examining some Bartram specimens that thus became types for Linnaean species.  Linnaeus must have met up with Georg Ehret in London, since the artist wrote that he had given him plates to finish Clifford’s catalogue.  In addition, John Martyn, a professor of botany at Cambridge and a London physician, was impressed enough with Linnaeus that their meeting led to a regular correspondence.

Linnaeus also managed time for a trip to Oxford where Johann Jacob Dillenius was professor of botany.  As with several other Linnaean first meetings, this one did not go well because Dillenius had read some of Linnaeus’s early publications, and he felt they threw botany into confusion.  After a few frosty meetings, they finally reconciled when Linnaeus showed Dillenius that he was wrong about his description of the genus BlitumThen Dillenius finally appreciated the depth of Linnaeus’s knowledge, and they had a lively conversation and continued to correspond afterwards.  Obviously Linnaeus’s time in England was very fruitful and provided him with several important contacts who would continue writing to him with information for years to come.

When Linnaeus left Hartekamp in fall of 1937 after finishing the catalogue that would become Hortus Cliffortianus, he went back to Leiden and spent the winter there, working with Adriaan van Royen in the botanic garden, classifying plants according to his sexual system (Rutgers, 2008).  In the spring, he started out for his return to Sweden by going in the opposite direction, to Paris, to visit the famous Jardin des Rois where he met the de Jussieu brothers.  Antoine was older, a professor of botany at the Jardin and a physician; he was a busy man.  He had one meeting with Linnaeus and introduced him to Bernard who then served as his guide.  Bernard de Jussieu showed him the herbarium, and they went through Joseph de Pitton Tournefort’s specimens, a broad collection that included plants from his voyages to the Middle East as well as to the Caribbean area.

Linnaeus also worked in the Jardin’s botanical library, where there were many books of which he had been unaware.  He prepared a ‘wish list’ and later procured a number of these titles.  At the Jardin, he met two of the most accomplished botanical artists of the day, the elderly Claude Aubriet, who had worked with Tournefort, and his pupil Françoise Madeleine Basseporte.  Aubriet showed Linnaeus the large collection of paintings of plants in the Jardin done over the years, so again, as with the time he spent with Georg Ehret, Linnaeus developed a taste of what the best botanical art looked like.  Paris allowed him to deepen still further his knowledge of botany in terms of specimens, living plants, books, and art.  All these were to figure in his future work, and he left for Sweden having made the best possible use of his three years away from home.  Those who read the first post in this series might remember that Linnaeus’s journey had in part been urged upon him by his future father-in-law who agreed to his daughter’s engagement only with the proviso that there be a three-year hiatus in their relationship.  Having fulfilled the agreement, Linnaeus was still an ardent suitor, and when he got back to Sweden, plans for the wedding proceeded.

References

Blunt, W. (1971). The Compleat Naturalist: A Life of Linnaeus. New York, NY: Viking.

Rutgers, J. (2008). Linnaeus in the Netherlands. TijdSchrift Voor Skandinavistiek, 29, 103–116.

Linnaeus in the Netherlands: George Clifford

3 Clifford Hypericum androsaemum

Hypericum androsaemum from the Clifford Herbarium, courtesy of the Natural History Museum, London

As I mentioned in the first post in this series, Carl Linnaeus had just begun work with Johannes Burman at the Leiden Botanic Garden when George Clifford (1685-1760) asked Linnaeus to write a catalogue of the plants in his garden at Hartekamp, near Haarlem in the Netherlands.  It took some convincing for Burman to release him, but it ended up well for Linnaeus.  He spent over two years at Hartekamp, where he had available to him a large collection of tropical plants from around the world.  Linnaeus had already sketched out his Systema Naturae (1735) before he left Sweden, but his knowledge of plant diversity was limited to northern Europe.  Then he met Jan Frederik Gronovius, who had studied plants that John Clayton had sent him from Virginia and Burman, who had Paul Herman’s specimen collection from Ceylon (now Sri Lanka).  His horizons were broadening (see last post).

Clifford was a wealthy Dutch financier and a director of the Dutch East India Company (VOC) that oversaw a worldwide shipping organization making the Netherlands a mercantile power.  From the VOC’s creation in 1602, its captains and ship surgeons were given directions on how to make collections and transport specimens, seeds, bulbs, and cuttings back home.  The more exotics that reached home, the more the Dutch became avid gardeners hungry for still more plant novelties.  Because of his position, Clifford had first dibs on the plants that arrived in Holland, and he had the interest and knowledge to appreciate them.  To give a sense of the scope of his collection, he had four greenhouses, one each for plants from Europe, Asia, Africa, and the Americas.  At this time, gardening and sophisticated plant collecting were status symbols for the elite; Clifford’s Hartekamp was obviously a premier example.  Even his herbarium specimens reflected his status.  The sheets had elaborately printed labels, and the cut end of each plant was covered with a printed urn (Thijsee, 2018).  This became a fad at the time among the rich and botanically sophisticated (see figure below).

Among the living plants in Clifford’s unique collection was a banana tree, which was growing well but had never blossomed or produced fruit.  Linnaeus gave it special attention and took credit for inducing it into flower in four months with a regimen of restricting watering, and then watering generously.  This was one of the first times this feat had been achieved in Europe and was so noteworthy that Linnaeus wrote a short book on the plant, and Clifford had it published (Rutgers, 2008).  This added luster to both their names; it also indicated Linnaeus’s skills with living plants as well as with identifying specimens.

Another important event during this time was the arrival of the German artist Georg Ehret at Hartekamp in 1736.  Ehret had already produced a large portfolio of botanical watercolors for several patrons, none of whom paid very well.  He had come to the Netherlands after doing some work in England and called on Clifford in the hope of finding further employment.  Clifford was indeed interested in Ehret’s work and even paid his asking price for a number of paintings.  Ehret remained at Hartekamp for a month, working on illustrations for Clifford’s catalogue.  Linnaeus explained to Ehret his plant classification system based on the reproductive structures in flowers.  He had worked out 24 classes simply by counting the number and arrangement of the stamens or pollen-producing male organs, with the 24th class reserved for those without visible stamens.  Within each class were subclasses depending up on the number of female organs.  The beauty of the system was its relative simplicity, grounded in traits that were usually visible and countable.

Ehret illustrated the system with a chart that has become famous, a simple visual representation of the 24 classes (see figure below).  He published it shortly after leaving Hartekamp and Linnaeus also published it much later, but not crediting Ehret.  Working in close proximity together, even for a month, must have been important to them both during this early formative period in their careers.  Ehret, who had already developed the practice of dissecting flowers and illustrating their parts, often with magnification, learned from Linnaeus the pivotal importance of these structures in identifying species.  On the other hand, Linnaeus was able to see the artistic and intellectual work that went into creating first-rate botanical art.  In their book Objectivity, Lorraine Daston and Peter Galison (2007) write of four-eyed sight, which results from an artist and a scientist working and looking together, resulting in an image that satisfies both.  Linnaeus and Ehret could very well have collaborated in this way.  After he left Hartekamp, Ehret had a long career in England producing illustrations for many major botanical works including those of Philip Miller and Christoph Jacob Trew, who had been an early patron of Ehret’s in Germany.

3 Ehret
Georg Ehret’s diagram of Carl Linnaeus’s classification system, courtesy of the Biodiversity Heritage Library

Most of the illustrations in the Clifford catalogue were done by Ehret and the remainder by Jan Wanderlaar, who also engraved the plates.  It took Linnaeus nine months to write the text (Blunt, 1971).  The species descriptions were organized according the classification system Linnaeus had laid it out in his Genera Plantarum, which was also published during this time (1737).  While he was in Hartekamp, he published early versions of other works as well.  Clifford also afforded him the time and the resources to become better educated in botany.  Besides his herbarium and garden, Clifford also had a substantial library, with all the leading botanical references of the day.  Hartekamp must have been a difficult place to leave.  However, after spending almost three years in the Netherlands, Linnaeus’s thoughts were of Sweden.  Yet he didn’t go directly home.  His further wanderings will be examined in the next post.

References

Blunt, W. (1971). The Compleat Naturalist: A Life of Linnaeus. New York, NY: Viking.

Daston, L., & Galison, P. (2007). Objectivity. New York: Zone.

Rutgers, J. (2008). Linnaeus in the Netherlands. TijdSchrift Voor Skandinavistiek, 29, 103–116.

Thijsse, G. (2018). A contribution to the history of the herbaria of George Clifford III (1685–1760). Archives of Natural History, 45(1), 134–148.

Linnaeus in the Netherlands: Mentors

2 Claytonia virginica

Specimen of Claytonia viriginia collected by John Clayton, courtesy of the Natural History Museum, London.

In the last post, I outlined the early days of Linnaeus’s three years of travel (1735-1738) and mentioned his early meetings with Herman Boerhaave, a physician and retired director of the Leiden botanic garden, and Jan Frederik Gronovius, a botanist with a large herbarium.  Linnaeus was much younger than them, and he learned a great deal from both, especially because they allowed him to study their specimen collections.  So they deserve more attention in this series of posts on Linnaeus’s travel experiences (Blunt, 1971).

For many years, Herman Boerhaave taught medicine at the University of Leiden and elevated the institution’s stature.  He then headed the university’s botanical garden and worked to increase its holdings of exotic plants.  He was aided in this by his contacts with the Dutch East India Company ( VOC), one of the leaders at the time in trading with Asia.  Following company instructions, surgeons and captains on VOC ships brought back cuttings, seeds, and specimens of plants they encountered on their travels.  Boerhaave was able to add many of these to his garden and herbarium, four volumes of which are now in the Sloane Herbarium at the Natural History Museum, London.  In addition, he published descriptions of new species and built on the work of botanists such as John Ray and Joseph de Pitton Tournefort in attempting to develop a natural classification system (Rutgers, 2008).  It is no wonder that with this background Boerhaave appreciated what Linnaeus was attempting to do with his Systema Naturae, which he had already sketched out by the time he went to Leiden.

Jan Gronovius was a student of Boerhaave’s.  He was an avid specimen collector and kept up a wide correspondence with naturalists in Europe and beyond.  It was through this network that he obtained John Clayton’s specimens from Virginia (see figure above).  Clayton became interested in botany and plant collecting after meeting Mark Catesby on his second trip to the American Southeast collecting for what became the impressive The Natural History of Carolina, Florida, and the Bahama IslandsAfter Catesby returned to England, Clayton shipped him specimens, which Catesby then passed on to Gronovius.  Eventually Clayton sent specimens and letters directly to Gronovius.

At this time, “sending a letter” across the Atlantic could mean waiting months to a year or more for a response, if indeed a response ever came.  Also at that time there was great interest in North American plants and not only because of their novelty.  Since the climate there was temperate as was that of Europe, species were more likely to acclimatize well and could be introduced into gardens.  Wealthy landowners were clamoring for the latest novelties, and botanists wanted to be the first to describe new species.  This helps to explain why Gronovius published a book, Flora Virginica, based on Clayton’s manuscript and specimens without letting him know about it ahead of time and gaining his permission.  This sounds rather dubious, but he did credit Clayton with finding the plants and sending him information on them along with the specimens.  Also, later observers have noted that because Gronovius was so well connected, his publication likely made Clayton’s work more broadly known than if Clayton himself had written on them.  As a case in point, Gronovius allowed Linnaeus to study the Clayton specimens, and so they became type specimens for a number of the North American plants Linnaeus described in Species Plantarum.  Linnaeus spent the winter of 1737-1738 with Gronovius right before returning to Sweden.  They worked on Clayton’s 1737 shipment of plants, to which they gave Linnaean names, a very early use of his system.

Gronovius was also in touch with another American botanist, John Bartram in Philadelphia.  They were originally connected by Bartram’s patron in England, Peter Collinson, another adept networker.  Bartram sent material to Gronovius, who again allowed Linnaeus to examine it.  This was later than with the Clayton material; Linnaeus by then had his long-term academic position in Uppsala and the two sent packages of specimens back and forth between them.  Eventually Gronovius and Bartram corresponded directly, as did Gronovius and Cadwallader Colden, a New York naturalist whose daughter Jane Colden was also involved in botany and produced an illustrated manuscript on New World plants (Colden, 1963).

One last name that should be mentioned as a Linnaean mentor is someone of his own age whom he had worked with while studying at the university in Uppsala.  There they planned to develop a system to organize all living things.  They divided up different groups between them.  For example, Linnaeus opted for most of the plants, and Peter Artedi selected fish and the Brassicaceae as among his favorites.  Finishing their studies, they went their separate ways, then met by chance in Amsterdam and took up where they left off.  Unfortunately, Artedi soon drowned in one of the city’s canals.  Linnaeus saw to the publication of Artedi’s manuscript on fish, and the approaches they developed to classification greatly influenced Linnaeus’s future work.  This is one of those cases where it’s interesting to speculate on what they would have achieved if they had been able to work together for years.

While the three individuals discussed here were important to Linnaeus’s career, it could be argued that the most important individual of his Netherlands sojourn was George Clifford with whom Linnaeus lived and worked for over two years.  Clifford will be the subject of the next post.

References

Blunt, W. (1971). The Compleat Naturalist: A Life of Linnaeus. New York, NY: Viking.

Colden, J., Rickett, H. W., & Hall, E. C. (1963). Botanic Manuscript of Jane Colden, 1724-1766. New York: Garden Club of Orange and Dutchess Counties.

Rutgers, J. (2008). Linnaeus in the Netherlands. TijdSchrift Voor Skandinavistiek, 29, 103–116.

Linnaeus in the Netherlands

 

1 Systema Naturae

Title page of Carl Linnaeus’s Systema Naturae (1735), courtesy of the Biodiversity Heritage Library.

There is a great deal of talk about the European Union these days, and the advantages of open travel among nations.  Freedom of movement is a wonderful concept in any age, and it’s one experienced by Carl Linnaeus (1707-1778) when he was in his late 20s.  Having completed his education in Uppsala, Sweden and having become engaged to a woman whom he very much desired, he set out for three years of study and travel.  This wasn’t entirely his own idea.  His future father-in-law was not thrilled with his daughter’s beloved, a physician with few financial resources, so he would only bless the match by having Carl agree to a three-year hiatus.  Linnaeus might not have been a man of means, but he was a man who had already learned a great deal about botany and had developed original ideas about how plant diversity should be organized.  He also had some experience of travel having spent a few months exploring Lapland, the northern reaches of Scandinavia.  So in 1735 he took his manuscripts, packed his bags, and headed to the Netherlands, traveling through Germany on the way.  His experiences in Holland and elsewhere in Europe did a great deal to form his ideas and shape his career.  This series of posts will look at some of those influences (Blunt, 1971).

It seems that Linnaeus did not make a good first impression on many people.  There are a number of stories about men who were put off by his self-possessed manner, and then, as they realized what a good mind lurked behind the bravado, became good friends with him.  This was the case with Johannes Burman, a professor of botany and director of the Amsterdam botanic garden.  Burman, who was the same age as Linnaeus, had been at the garden for several years working on the Flora of Ceylon, using primarily the herbarium of Paul Hermann, who had collected there in the 1670s.  After this brief meeting where Burman was unimpressed by Linnaeus, it would probably have been difficult for either of them to predict that they would be lifelong friends.  At this time Linnaeus also visited Albertus Seba who had amassed a large cabinet of curiosities including materials he collected on trips to the East and West Indies.  During these years the Netherlands was an important naval power with far-flung mercantile interests, so along with trade goods—like spices and silks, exotic plants, animals, and artifacts also poured into Dutch ports.  Even though Seba had sold his original massive collection, he was able to build another and showed some of it to Linnaeus on two visits to his home.  He later asked Linnaeus to assist him in preparing a book he was writing on his holdings, but by then the Swede had made other connections (Rutgers, 2008).

Linnaeus next spent two weeks in Harderwijk, the site of a university where for a week’s residency he qualified as a doctor, submitting a thesis he had written in Sweden.  Then he went to Leiden and showed his manuscript of Systema Naturae to the Dutch botanist Jan Frederik Gronovius, who was so impressed with the work that he arranged for its immediate publication as a thin volume of 14 pages that set out the rudiments of Linnaeus’s taxonomic system.  Gronovius also gave him a letter of introduction to Herman Boerhaave, who had retired as head of the Leiden Botanic Garden.  As with Burman, their relation did not begin smoothly, but eventually Boerhaave appreciated Linnaeus’s intelligence and energy.  However, none of these meetings landed him a position where he could earn enough money to allow him to remain in the Netherlands.  He told them that he would have to return home.  That’s when Boerhaave offered to fund a trip to Cape Town, South Africa which was then under Dutch control and was proving to be a botanically rich area.  Linnaeus, however, after his Lapland expedition, did not much relish a long journey with many probable hardships; Sweden was a safer and easier option.

There are more twists to this story.  On his way home, Linnaeus stopped in Amsterdam and again visited Burman, this time with a letter of introduction from Boerhaave.  Burman paid more attention to his visitor, especially after Linnaeus was able to identify a rare plant Burman showed him.  The latter offered to pay Linnaeus for helping to prepare the Flora of Ceylon, and also convinced him that he should definitely call on George Clifford, a wealthy merchant and horticulturalist who lived near Haarlem.  Clifford and Linnaeus got on well because Linnaeus identified many of his hosts’ Indian plants and was sorely tempted by Clifford’s offer to live and work on his estate, with access to his garden and herbarium.  But Linnaeus was committed to Burman.  In the end, Burman and Linnaeus visited Clifford, and Burman agreed to free Linnaeus if Clifford would give him a very desirable book displayed in his library: the second volume of Hans Sloane’s Natural History of Jamaica.  Clifford and Linnaeus were both very fortunate, with the gardener/financier getting an expert to bring order to his collection of specimens, properly name his plants—those in the herbarium and those in the garden—and help in producing a catalogue to make public his botanical treasures.  Linnaeus, on the other hand, was freed of economic worries, had a very comfortable place to live, and great resources to work with, including a first-class library.  What happens then will be the subject of a later post.

References

Blunt, W. (1971). The Compleat Naturalist: A Life of Linnaeus. New York, NY: Viking.

Rutgers, J. (2008). Linnaeus in the Netherlands. TijdSchrift Voor Skandinavistiek, 29, 103–116.

Natural History in 17th-Century Britain: John Ray

1 Ray

Title page of John Ray’s Historia Plantarum, from the Biodiversity Heritage Library

I’ve written a number of posts about 16th-century naturalists who opened the field of early modern botany, especially about Luca Ghini, an early advocate for the herbarium, and those who worked with him (1,2,3,4).  In this series, I want move on to the 17th century and discuss a circle of naturalists working in Britain.  They knew each other, as least causally, in part because they were all members of the Royal Society of London (RS), which was founded in 1660.  This was in the latter days of a turbulent time in Britain when kings had been killed, Oliver Cromwell took over the government, and finally the monarchy was restored by bringing Charles II to the throne.  Part of this political turmoil was religious as well, with Catholics and different Protestant factions at odds with each other—and with the government.

But what does this have to do with plants?  Well, quite a bit, because many of those interested in natural history were products of Cambridge and Oxford Universities, which were then religious institutions devoted primarily to training clergy.  They were affected by the political upheavals, especially when Cromwell.  When King Charles II reached the throne, those working at the universities was asked to sign a loyalty oath to the Church.  John Ray (1627-1705), a naturalist who had been teaching at Oxford for 13 years, refused and lost his job.  He responded by not only leaving the university but the country and spent the next three years traveling in Europe, most of the time with Francis Willughby  and Philip Skippon, both of whom he had tutored.

Ray and Willughby had already made several collecting trips to areas in Britain, and Ray had published a Flora of Cambridgeshire (1660), the first of its kind for the British Isles and one that served as a model of such books.  This came to my attention recently when I read Tim Dee’s (2015) Four Fields, one of which is in Cambridge where he lives.  Dee writes of Ray’s work:  “I can think of nothing more thrilling, nothing that our species has done better, than this benign capture and permanent vivifying of a season, a pathway and a field edge, and its simpling, or its lovable mapping of what might be in front of us” (p. 236).  In other words, Ray makes the nature of Cambridge come alive.  Early his book, Dee himself writes that as a child he was enchanted by the world of books and found that books about the living world made that world more vivid and real.

Ray’s interests, like those of most naturalists of his time, extended well beyond plants.  With Willughby, he investigated birds, insects, and fish, publishing the results of their work after Willughby’s early death.  There will be more on Willughby in the next post.  For now I want to stick with Ray’s major work, his massive three-volume Historia Plantarum (1686-1704).  Agnes Arber (1943) suggests that its size, as well as its Latin text, led to its lack of popularity, but it’s nonetheless an important resource.  Ray is credited with one of the best pre-Linnaean classification schemes.  He built on the much earlier work of Andrea Cesalpino and still divided plants into trees, shrubs and herbs, but he also differentiated between monocots and dicots, and between angiosperms and gymnosperms.  These were not totally new discoveries, and much of the terminology came from the writings of Joachim Jung.  But Ray’s genius was in gathering all this information together and presenting it in a clear, organized way.  His work is considered one of the forerunners of Antoine Laurent de Jussieu’s natural system of classification.

Alexander Wragge-Morley (2010) argues that Ray’s descriptions were a form of picturing, they “enjoyed the same epistemic status as graphic representations, because they provoked images—and knowledge—of the same sort.  An image revealed immediately, a verbal description, more slowly” (p. 174).  Ray himself wrote that images can enhance the intelligibility of text, but can’t replace it because there is information about a species that can’t be conveyed in an engraving.  This was an opinion Ray shared with others like Robert Hooke and Nehemiah Grew, both of whom did use illustrations in their publications.  One reason Ray didn’t was their cost, but he also seemed to gravitate toward words.  He didn’t think much of herbaria, though there is one in the Sloane Herbarium at the Natural History Museum, London containing plants he collected on his European tour.  He doesn’t seem to have kept specimens relating to his Historia, though he did examine plants in a number of herbaria including those of Hans Sloane, Leonard Plukenet, and James Petiver.

Ray wrote a number of other works, including some I’ll mention in the next post on Francis Willughby.  He also produced a collection of translations of travel writings by authors who had toured parts of the Middle East.  The major portion was a translation by a German writer into English of Leonhard Rauwolf’s travelogue, noting the many plants he encountered along the way (see earlier post).  Ray also wrote a theological tract.  Throughout his life he remained religiously fervent, like many of his day, and saw the study of nature as a way to learn more about the creator.

References

Arber, A. R. (1943). A seventeenth-century naturalist: John Ray. Isis, 34, 319–324

Dee, T. (2015). Four Fields. Berkeley, CA: Counterpoint.

Ray, J. (1660, 1975). Ray’s Flora of Cambridgeshire. Hitchin, UK: Wheldon and Wesley.

Wragge‐Morley, A. (2010). The work of verbal picturing for John Ray and some of his contemporaries. Intellectual History Review, 20(1), 165–179.

Vicki Funk: Thinking Big about Collections

4 ala

This is a last in a series of posts [1,2,3] on the plant systematist Vicky Funk and her recent review article on collections-based research.  Since Funk is a research scientist and curator in the National Museum of Natural History’s (NMNH) Botany Department, it isn’t surprising that she begins a section on the future use of collections with stats on herbaria.  The NMNH, part of the Smithsonian Institution, is home to the U.S. National Herbarium, with a collection of over five million specimens.  The goal there and at many herbaria is to digitize the data for all specimens and in some cases to also image them.  If this could be done at every herbarium, the data would serve as a potent research tool not only for taxonomists but for ecologists, conservationists, and researchers in other fields who never before considered using the information about plants available in herbaria.

One burgeoning field based on the availability of digital specimen images is computer vision and machine learning techniques that make automated plant identification possible.  It is sort of face recognition for plants and is developing to the point that herbarium specimens can be sorted rather well, though the processes are hardly at the point where identification is as good as that done by taxonomists.  However, machine sorting could be employed as a way to narrow down the number of specimens a researcher would have to look at in hunting for new species.  One recent report the computer was able to distinguish between moss groups better than the human eye could.

Funk cites several successful digitization projects, noting that the Atlas of Living Australia is a particularly comprehensive one that has resulted in online access to all records of Australian plant specimens held in the country’s national herbaria.  Australia is also at the forefront in developing software tools to assist researchers in extracting as much information as possible and in the most effective ways.  However, Funk sees the future as going beyond national or even regional databases:  “A Central Portal so all resources are available to everyone is critical.  It is particularly important that these efforts are making the data and images available to researchers in the countries where the specimens were collected, thereby supporting research in those countries” (p. 185).  She is referring to the fact that the bulk of specimens collected in developing countries, particularly during their colonial pasts, are held in European and North American herbaria.  A first attempt to make these specimens broadly available was the Andrew W. Mellon Foundation funding of type specimen digitization, the results now accessible through JSTOR Global Plants along with a great deal of supporting botanical literature.

But what Funk visualizes is something more comprehensive, and as an example, she describes a project funded by the Powell Center of the US Geological Service.  It focuses on the approximately 2500 species of North American Compositae (Asteraceae) and the location data on hundreds of thousands of specimens aggregated from GBIF (includes information from institutions outside the US), BISON (from US government institutions) and iDigBio (US private institutions).  Funk notes that this data is not only aggregated but “cleaned” to make sure it is of high quality, an issue that critics of aggregation emphasize.  The data is then integrated with environmental and geophysical data on geochemistry, climate, topography, etc., as well as phylogenetics—including gene sequences from GenBank.  Think of the power of this:  linking specimens with sequence and environmental data.   This is truly a harbinger of a new age in collections-based research.  It is amazing that ten years ago, just digitizing data and imaging specimens was considered a feat, with the Paris Herbarium’s plan to digitize most of its specimens considered daring.  Now the assembly line method they used has become relatively common, and other large herbaria have substantial percentages of their collections digitized and imaged.

Linking natural history collections to genetic data banks means uniting the two great arms of bioinformatics.  It is a biologist’s dream come true, and this connection will become even more powerful when environmental data is brought into the mix—a much more complex process.  But Funk has seen the digital world burgeon and has been one of the forces behind making it applicable to systematics.  She has also helped make systematics valuable to other fields such as phylogenetics and the growing discipline of phylogenomic—being able to sequence and compare entire genomes.  This is the result of new sequencing techniques that utilize fragmented DNA, just the type available in herbarium specimens.  Drawing on an example from the Asteraceae, Funk cites a study in which the entire genomes of 93 of 95 Solidago, goldenrod, herbarium specimens were sequenced with the plants ranging in age from 5-45 years (Beck & Simple, 2015).

In closing Funk notes:  “One exciting trend is the developing field of Integrative Systematics where collections-based systematics is combined with extensive field studies, phylogenetics, phylogenomics, detailed morphological studies, biogeographic inferences and diversification analysis to present a more comprehensive global” (p. 187).  She also argues for the maintenance of collections in educational institutions to insure the instruction of future generations of systematists; the digitization of cleared leaf slides, anatomy slides, pollen images, chromosome count images, and illustrations to fill out the information available to researches; and finally a series of symposia on the Tree of Life where systematists can map out a research agenda for the rest of the 21st century.

References

Beck, J. B., & Semple, J. C. (2015). Next-Generation Sampling: Pairing Genomics with Herbarium Specimens Provides Species-Level Signal in Solidago (Asteraceae). Applications in Plant Sciences, 3(6), 1500014.

Vicki Funk: The Age of Tree Thinking

3 idigbio

In the last post, I began my discussion of Vicki Funk’s (2018) recent article on “Collections-Based Science in the 21st Century” that I’ll continue here.  In this review, she terms the first 15 years of the 21st century “An Age of Tree Thinking,” in other words a time of investigating evolutionary relationships and the use of phylogenies.  This is a major interest of Pam and Douglas Soltis of the University of Florida, two other leaders in the field of collections-based research (Allen et al., 2019).   Funk gives examples of what she means by this term, beginning with evolutionary medicine.  This field’s work includes tracing changes in viruses as they are transmitted through a population and even within one body over time.  Funk notes that museum specimens of woodrats have been found to harbor viruses similar to those causing Chagas disease.  She also touches on food safety, beginning with GenomeTrakr a pathogen database set up by the Food and Drug Administration.  It hosts whole genome sequences for pathogens, mostly those implicated in food poisoning.  When an outbreak occurs, the pathogen involved can now be quickly sequenced, and then compared to sequences in the database; this helps to identify the source of contamination and speed control of the outbreak.

Moving on to evolutionary ecology, Funk cites a number of examples of how phylogenetics can illuminate ecological questions.  For example, DNA was sequenced from ragweed (Ambrosia artemisiifolia) specimens collected through time, both before and after deforestation in particular areas.  Pollen core data suggest that ragweed, an aggressive weed, was uncommon before deforestation.  The DNA sequencing data indicates that there was a hybridization before deforestation that may have permitted the hybrid to grow more aggressively when trees were removed.  This is a good example of pairing historical data with molecular analysis.

Funk’s paper also explores the idea of DNA barcoding, a technique that her colleague John Kress at the Smithsonian has fostered.  For plants, it involves sequencing two regions of the chloroplast genome that serve as a fingerprint for species identification.  Kress and his colleagues (2009) barcoded all tree species growing in a plot on Barro Colorado Island in Panama, a long-term Smithsonian study site.  The resulting phylogenies are being employed to investigate the relationship between habitat and community structure.  Barcodes are also used to monitor illegal traffic in endangered species, for example, as a way to identify illegal shipments of rare woods.  Since her article’s title, “Collections-Based Science in the 21st Century,” doesn’t limit Funk to only plants, she slips in a reference to molecular phylogenetics in human evolution studies, noting how DNA extracts from fossils of Neandertals and of a hominin population called the Denisovans found in the Siberian Altai Mountains, as well as from present-day humans, were employed to work out the relationship among them, with Neanderthals and today’s humans more closely related to each other than to Denisovans.  In an example relevant to botany, medically important plants have been barcoded over the past ten years, and molecular phylogenetics can be used to test the purity of ingredients in herbal medicines.  This is a perennial problem due to varying levels of quality control for these materials, resulting in impure or ineffective products.

What these examples of tree thinking have in common is that they involve DNA sequencing and the storage of that information so it can be used in future studies.  In other words, there is a summative process going on here, and these databases, if properly maintained and utilized will only become more and more valuable and effective.  In the next section of her article, Funk deals with the future, and calls it “An Age of Thinking Big.”  This theme is also taken up by a group of European researchers (Besnard et al., 2018).  Funk discusses not only collections of DNA sequences, and the voucher specimens that back them up, but also the increasing availability of online data about natural history specimens as well as images of them.  Digitization has been going on for years, especially since the development of BISON, which is a database for specimens from US government facilities such as the Smithsonian, and iDigBio, for private research and educational collections.  While more and more information is coming online, there is still a great deal to do.  To date, less than half of all plant specimens are databased, and that percentage is even lower for animals—there are an awful lot of insects out there, which were relatively easy to collect, but not so easy to image, to say nothing of jellyfish, etc.

Funk considers some of the questions that could be tackled if all specimen data were available to researchers:  “What parts of the world need additional collecting expeditions?  How many species are rare?  How many species have not been collected in the last 50 years and may be extinct?  Are there certain areas that have a lot of rarely collected species and are these areas endangered ecosystems?  How fast have invasive species moved into new areas?  How has community composition changed through time?” (p. 182).  This list is reminiscent of Funk’s “100 Uses for an Herbarium.”  With her vast experience she is very good at thinking about why collections are valuable as research tools, and this analysis is especially useful today as many collections are facing uncertain futures.  In an earlier post I cited one example of Funk’s writing on this topic.  Here I’ll end with another citation, a review article she wrote with several of her colleagues on what collection based systematics should look like in 2050 (Wen et al., 2015).  Her answers to this question will be covered in the next and last post in these series.

References

Allen, J. M., Folk, R. A., Soltis, P. S., Soltis, D. E., & Guralnick, R. P. (2019). Biodiversity synthesis across the green branches of the tree of life. Nature Plants, 5(1), 11–13.

Besnard, G., Gaudeul, M., Lavergne, S., Muller, S., Rouhan, G., Sukhorukov, A. P., … Jabbour, F. (2018). Herbarium-based science in the twenty-first century. Botany Letters, 165(3–4), 323–327.

Kress, W. J., Erickson, D. L., Jones, F. A., Swenson, N. G., Perez, R., Sanjur, O., & Bermingham, E. (2009). Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences, 106(44), 18621–18626.

Wen, J., Ickert‐Bond, S. M., Appelhans, M. S., Dorr, L. J., & Funk, V. A. (2015). Collections-based systematics: Opportunities and outlook for 2050. Journal of Systematics and Evolution, 53(6), 477–488.

Vicki Funk: The History of Collections-Based Science

2 cladist

In the last post, I introduced Vicki Funk, a plant systematist who is a research scientist and curator at the U.S. National Herbarium, part of the Smithsonian Institution’s National Museum of Natural History.  There I mentioned that Funk had recently published a review article called “Collections-Based Science in the 21 Century,” published in the May 2018 issue of the Journal of Systematics and Evolution.  As with most review articles, it begins with a historical perspective.  The first sentence is a bold claim:  “Major revolutions in scientific thought have occurred because of collections-based research” (p. 175).  Funk is in a position to know both because she works in an institution with a premier natural history collection, and because she herself has contributed to today’s revolution in how collections are accessed and utilized.

Funk begins with the age of classification and Carl Linnaeus’s heavy reliance on natural history collections in creating his artificial system of classification and nomenclatural reform.  Michel Adanson and Antoine Laurent de Jussieu, working at the botanical garden in Paris with its notable herbarium, devised natural classification schemes that in various forms eventually replaced the Linnaean artificial system.  The 19th century, Funk notes, began with Alexander von Humboldt’s expedition to Latin America that gave him the perspective to develop the field of biological and physical geography, along with ecology and meteorology.  He and his traveling partner Aimée Bonpland collected 50,000 specimens, documenting many new genera and species as well as the relationship between geography and species distributions.  Later, Charles Darwin, Joseph Dalton Hooker, and Alfred Russel Wallace not only collected specimens but used them to build on Humboldt’s work and to document the concept of species change.  With examples like this Funk makes clear the connection between collection and theory building, as well as the importance of great natural history museum collections, many of which were built in the 19th century.

Funk terms the 20th century the “Age of Synthesis” in reference to the evolutionary synthesis that developed at mid-century and to “four collection-based ideas and methods that changed . . . the way we do science” (p. 178).  The first was the concept of continental drift and with it the idea that land bridges between continents had existed in the past.  Both Humboldt and J.D. Hooker argued for these from the similarities among organisms in areas that are now separated by great distances.  Second was the development of phylogenetic systematics or cladistics, a field to which Funk has contributed a good deal both theoretically (1991) and in terms of her research, especially on the Asteraceae.  Cladistics deals with using derived characters to objectively construct relationships, then grouping taxa so all are descended from a single common ancestor without omitting any of its descendants.  This is a complex field, and as a recent issue of the American Journal of Botany (August 2018) on fossil plants reveals, there are problems that arise when only living species are used in creating monophyletic groups, so fossil collections are crucial to the process.

Under the third 20th-century trend, Funk lists databasing collections, biodiversity science, and niche modeling.  This is a huge triumvirate, but with its parts closely tied together.  Databasing collection data—specimen identification as well as place and time of collection—makes it possible to more easily assess data on the biodiversity of a region as well as on how it may be changing over time.  It also allows rigorous niche modeling, a term for techniques employing occurrence data to model the possible spatial extent of a species based on geographical and climatic data.  Ecology has always been a field using sophisticated mathematical models but the availability of digital data and high-speed computing have caused an explosion in research.  And this is really only the beginning, as more collection data and analytic tools come online.

The final concept Funk cites as developing in the 20th century is molecular phylogenetics, the analysis of gene sequences as a way to discover phylogenetic relationships.  She writes:  “Collections are an excellent source of material for the extraction of DNA, but they are also important because they provide the vouchers of the DNA sequences, and their presence allows us to check the identification of samples and to gather the data needed to ask questions about character evolution and modes of speciation” (p. 180).  These vouchers usually contain at least some geographic information, bringing in the biogeography she mentioned earlier.  Molecular systematics helped to clear up some arguments about derived characters used in cladistics and resulted in a major reorganization of plant phylogenetics.  As will become apparent in the next two posts, sequencing techniques have changed rapidly during the latter part of the 20th and into the 21st century, increasing the efficacy of DNA analysis with herbarium specimens.  These tools now allow sequencing of species for which no fresh material is available because the species are rare, inaccessible, or even extinct.  If historical material is available, they also enable work on how the genetics of a species may have changed over the last few hundred years.

Vicki Funk and the Uses for a Herbarium

1 montanoa_hibiscifolia

Montanoa hibiscifolia, photo by Forest & Kim Starr.

Early in my romance with herbaria I came across an article by Vicki Funk called “100 Uses for an Herbarium (Well at Least 72).”  Learning about the many ways plant collections can be utilized got me even more excited about them.  I also felt I had met a friendly member of the herbarium community, someone with a sense of humor.  She came up with a great title for her piece and then stuck with it even though she didn’t quite get to the magic number her title promised.  In the piece, Funk lists herbarium functions from verifying plant Latin names in issues of nomenclature, to serving as a repository for voucher specimens, to making specimens available to students and interested members of the public.  This article was written in 2004, and I am sure that Funk could come up with many more roles today.  She in fact does move in that direction in a major review article she recently published on “Collections-Based Science in the 21st Century” (2018).  I plan to use that article as the basis for this series of posts, but first I’ll say a little more about Vicky Funk, who seems to me to be the epitome of a plant systematist in the 21st century.

Focusing on Funk’s work right now is particularly timely because she has won the 2018 Asa Gray Award, the American Society of Plant Taxonomists’ highest honor.  The fact that her nomination was accompanied by 18 letters of support suggests just how deserved this recognition is.  Funk is a research scientist and curator at the U.S. National Herbarium in the Department of Botany at the National Museum of Natural History, part of the Smithsonian Institution.  She is an expert on the Asteraceae or Compositae and is lead editor for the 2009 Compositae: Systematics, Evolution, and Biogeography of the Compositae.  This is a massive work in every sense of the term because it treats one of the largest flowering plant families.  She has also been involved in the creation of the digital Global Compositae Checklist.

Funk received her Ph.D. from Ohio State University for work on Montanoa, a genus of plants with daisy-like flowers in the Heliantheae or sunflower tribe of the Asteraceae.  They are native to Central and South America, but since then Funk has worked in Hawaii, Guyana, and a number of other places, and perhaps most importantly in the developing field of phylogenetics.  She has also been an important figure in the development of plant cladistics and is coauthor of the classic, The Compleat Cladist.  While doing all this research, she has been a good citizen of the plant systematics community as president of both the American Society of Plant Taxonomists and the International Association of Plant Taxonomists.  I have yet to meet Funk, in part because I am in awe of her.  However I have heard her speak; her passion, intelligence, and good sense come through along with her deep and comprehensive knowledge of the field.

Funk has also been a hard working member of the Smithsonian scientific community.  I keep up with her through the pages of the U.S. National Herbarium’s newsletter that has the great title The Plant Press and is available online.  The first issue I read was from 2007 when she had the lead article on the 20-year project of the National Museum of Natural History called the Biological Diversity of the Guiana Shield program.  As Funk describes it, the shield is a geological formation of igneous and metamorphic rock that underlies the northeast corner of South America and includes parts of Venezuela, Guyana, Surinam, French Guiana, Brazil, and Columbia.   At the point when she was writing, the Shield plants checklist, of which she was an editor, was in press.  It has proven to be an important resource since its publication in 2007.  I should note that her article includes a photo of herself and two colleagues doing what is stated to be their “best” imitation of a jacana, a South American marsh bird, standing on one leg.  In a later issue of The Plant Press, (April-June 2011), she is pictured more sedately with the University of the District of Columbia students she was mentoring.  In most photos Funk is wearing Hawaiian patterned shirts replete with large tropical blooms, seemingly to remind herself of her work on Hawaiian plants and to provide others with a pleasant aesthetic experience.

But while Funk can be light-hearted, she can also be deadly serious, as she was in the October 2014 issue of The Plant Press with the opening lead article:  “The Erosion of Collections-Based Science: Alarming Trend or Coincidence?”  She unfortunately sides with the first alternative, citing a number of disturbing cases over the prior years, including elimination of the science program at the Milwaukee Public Museum, dwindling support for scientific research at Fairchild Tropical Botanic Garden in Florida, closing of the science program at the Brooklyn Botanic Garden, and diminishment of programs and staff at the California Academy of Sciences, the Field Museum in Chicago, and the Royal Botanic Gardens, Kew.  Funk then goes on to outline the results of these cuts:  less projects in developing nations to assist in their scientific and economic development, weakening of education programs in the life sciences, and reduction in research on such crucial topics as climate change.  As the following posts will illustrate, these were hardly Funk’s last words on these topics.  She is in the forefront of the effort to support the future of systematics and environmental studies.

References

Funk, V. A., & International Association for Plant Taxonomy. (2009). Systematics, evolution, and biogeography of Compositae. Vienna, Austria: International Association for Plant Taxonomy, Institute of Botany, University of Vienna.