The Linnaean Apostles: Daniel Solander

3 Solandra tridentata LINN 332a.2

Solandra tridentata (LINN 332.2) from the herbarium of the Linnean Society, London

In the last post I discussed one of Carl Linnaeus’s students, Peter Forsskål, who never returned from his expedition to the Near East.  Daniel Solander (1733-1782) traveled farther and also lived to study the fruits of his exploration.  He was born in Lapland and, not surprisingly, studied in Uppsala where he was considered Linnaeus’s favorite pupil.  When British botanists asked Linnaeus to send someone to England to boost the use of Linnaean taxonomy, Solander was chosen.  He left in 1760 and never again lived in Sweden.  At first, he spent time reorganizing the herbaria of wealthy patrons such as the Duchess of Portland and Peter Collinson, who was one of those who had encouraged Linnaeus to send an “apostle” to England.  He was influential in British botanical circles as a member of the Royal Society, a trustee of the newly formed British Museum, and a patron of the American nurseryman John Bartram.  Solander sent specimens from Collinson and others on to Linnaeus.  When the British Museum was looking for someone to care for the herbarium of Hans Sloane, the donor of the museum’s founding collection, Collinson asked Lord Bute, then Prime Minister, to suggest Solander to the King as the ideal choice (Rose, 2018).  This is a fascinating, though tiny, piece of history because all of the individuals involved were interested enough in plants that the care of a plant collection would be discussed at the highest government levels.

Solander began working at the museum in 1763 and set about giving the plants in the herbarium Linnaean names without disrupting the physical order of its 265 bound volumes.  This was a compromise that would allow those not familiar with the new system to still find plants in the collection using Sloane’s system, which was essentially an annotated copy of John Ray’s Historia Plantarum in which Sloane or his botanical curator had written the volume and folio numbers for each species, noting new species when necessary.  Solander began with the first volumes of the herbarium, those containing the collections Sloane had made while he served as physician to the Duke of Albemarle on the island of Jamaica in 1687-1688.  Among the 800 species were hundreds of new ones that Sloane described in his two volume Natural History of Jamaica (1702-1727).  Solander wrote the names on labels that he added to Sloane’s sheets, but retained the older labels, an approach that not been taken by many earlier botanists though later became the norm.

While at the museum, Solander began to receive visits from a young botanical enthusiast, Joseph Banks, heir to a large fortune who had attended but not graduated from the University of Oxford.  He supplied Solander with an unmarked copy of the Sloane Jamaica volumes to annotate.  This was a good way to keep track of the Jamaican species.  When Solander moved on to the rest of the collection, he used slips of paper to record the new names and crossreferenced them with the volume and folio numbers.  He also annotated a copy of Linnaeus’s Species Plantarum.  In this way, the collection was “modernized” without being rearranged.  This went on until 1768, when Solander took on a very different kind of challenge.

Banks had convinced the British Admiralty to make him part of the round-the-world expedition to be led by James Cook on the Endeavor.  It’s major aim, and the publicized one, was to observe the transit of Venus across the sun, which would take place on June 3, 1769.  However, Cook was also instructed to visit Australia, acquiring as much navigational and geographic information for future use in possible colonization (O’Brian, 1993).  Banks, at his own expense, put together a team to study natural history.  It included Solander, Herman Spöring of Finland as secretary, two artists, and two servants.  Banks paid to outfit the ship for his group as well as for scientific instruments and other supplies for preserving specimens and even for growing plants.  There is obviously a lot to this story, but for now I will stick to Solander and plants.

Apparently Banks and Solander made a good team.  They developed a system for dealing with the huge amount of material they collected, in all, about 30,000 plant specimens.  They would return to base each day, give the artist Sydney Parkinson the fresh material to sketch and make color notes, while they, with Spöring’s help, wrote up their notes.  The plants were pressed, though at times, as when they reached Australia, their system couldn’t keep up with collecting.  Plants weren’t drying fast enough, so the pair laid them out on deck on sails during the day.  Needless to say, this massive collection proved daunting to tackle for publication.  Banks and Solander worked on it for years, with engravings made of about 800 species from the Parkinson drawings.  The artist hadn’t survived the voyage, but he did produce 900 complete watercolors and as well as hundreds of sketches.  Unfortunately, Solander died in 1782 before the project was completed, and Banks seems to have given up first-hand work on botany after his death.  Instead, Banks became more involved in projects to promote botanical exploration as well as agriculture.  The Banks’ Florilegium wasn’t published until the 1980s in 34 massive volumes.  Solander did not publish much but he was obviously essential to the Endeavour mission, and perhaps even more importantly, to making the Sloane Herbarium a continuingly useful botanical resource.

References

O’Brian, P. (1993). Joseph Banks: A Life. Boston, MA: Godine.

Rose, E. D. (2018). Specimens, slips and systems: Daniel Solander and the classification of nature at the world’s first public museum, 1753–1768. The British Journal for the History of Science, 5 (2), 1–33.

Advertisements

The Linnaean Apostles: Peter Forsskål

2 Forskohlea sp Linn

Forskohlea sp. (LINN 605.1) from the herbarium of the Linnean Society, London

I should note before introducing the second of the students of Carl Linnaeus whom he sent out to gather exotic plants for him, that I am only going to deal with four of them in this series of posts, though there were about 20 by one count and 17 are listed in a booklet available online, The Apostles.  I chose these men because they are the ones I’ve most often encountered in my reading about botanical explorations, and they seemed particularly intriguing, as in the case of this post’s subject, Peter Forsskål (1732-1763).  Like several others in the group, he died on his travels and had interests that stretched well beyond botany.  Born in Finland, he spent much of his childhood near Uppsala and then attended the university there, studying with Linnaeus.  However, his chief interest was in orientalism.  He showed such promise that he was sent to Germany to study with Johann Michaelis, a leading biblical scholar and specialist in Near Eastern languages.  Forsskål again excelled, and his intellectual thirst was so great he continued to study botany as well as entomology and philosophy (Baack, 2013).

There was a liberal political environment at the university that excited Forsskål and inspired him to write a pamphlet called Thoughts on Civil Liberty.  In 1759, he had it published in Swedish and Latin, though only after the Swedish government censors had made some changes to the text.  This essay contributed to a Swedish freedom of the press act in 1766 (Goldberg, 2013).  However, it did not endear Forsskål to the faculty in Uppsala who refused to offer him a faculty position.  Meanwhile, Johann Michaelis urged the Danish king to finance a scholar fluent in Arabic to go to Yemen to study the natural sciences and geography of the Near East.  Scholars from Britain and the Netherlands were investigating this field, and Michaelis wanted to have a direct line to the area.  The King’s advisers were interested in encouraging Danish culture and science, so they even provided extra funds—two years of support for preparations.

Forsskål spent his time studying with Linnaeus on how to describe plants accurately and take notes on geography and climate.  He also continued studying Arabic and biblical history, though as the expedition continued it became more about natural history and less about religious studies.  There were five in the scientific contingent besides Forsskål:  a philologist to study language and custom, a physician, an artist, an assistant, and finally a cartographer and mathematician, Carsten Niebuhr, who was the only one of the six to return alive from the expedition that lasted over six years.  They sailed from Copenhagen in January 1761 and reached Alexandria in September.  Several difficulties kept them in Egypt for almost a year.  Forsskål used his time well once he worked out how to function effectively in the area.  He was attacked and robbed twice while exploring in the desert, so he hired a Bedouin guide who led him to interesting local specimens.  He also grew a beard, took an Arabic name, and dressed in robes.  Eventually he collected 576 species in Egypt; half were new species.  This was the most extensive Egyptian plant collection made in the 18th century.  He also wrote on the fertility of Egyptian soil and the relationship between geography and plant characteristics.  Though I am focusing on plants here (of course), Forsskål also collected insects and shells, sending everything back to Linnaeus.

From Egypt, the group then set out for Yemen, sailing across the Red Sea where Forsskål made extensive observations on marine biology.  In Yemen, he and Niebuhr often explored together, taking multi-day excursions into its biologically and geologically varied regions:  coastal plain and marshes, desert, and highlands.  Local officials and inhabitants were helpful.  In six months he managed to collect 693 different plant species, more than half new to science.  He also took extensive notes on plant habitats and distributions.  It’s obvious that Niebuhr as a cartographer would have had input here, and it’s easy to envision their conversations as they traveled.  Unfortunately, Forsskål only managed to complete six months of collections in Yemen before he died there of malaria in July 1763.  Niebuhr, surviving Yemen, went on with the expedition to India.  He eventually returned to Denmark in 1768 and arranged for the publications of Forsskål’s Flora Aegyptiaco-Arabica in 1775, even using his own funds to see the project through to completion.

Needless to say, Linnaeus made good use of the materials Forsskål sent him; these were particularly important because they included the Arabic names for the plants.  Paired with the specimens, these provide information that is still valuable on what was growing in the area.  Forsskål did collect duplicates, but the bulk of his collection, over 1300 sheets, is held in the herbarium of the Natural History Museum in Copenhagen where it is considered the institution’s greatest treasure.  Forsskål was only 31 when he died, but he made a significant contribution to science and also to human rights with his essay on civil liberty.

References

Baack, L. J. (2013). A naturalist of the Northern Enlightenment: Peter Forsskål after 250 years. Archives of Natural History, 40(1), 1–19.

Goldberg, D. (2013). Peter Forsskal: Goettingen prodigy and author of one of the least known jewels of Enlightenment literature. Goettingen Academy of Sciences.

The Linnaean Apostles: Pehr Kalm

1 Kalmia angustifolia 560.2

Kalmia angustifolia (LINN 560.2) from the herbarium of the Linnean Society, London

In the last series of posts (1,2,3,4), I discussed Carl Linnaeus’s time in the Netherlands where he was able to broaden his knowledge of plants and solidify his ideas on taxonomy.  When he returned to Sweden, he stayed put for the rest of his life, never leaving his native land again.  However while in Holland, England, and France, his exposure to plant collections from all over the world—living and preserved—made him realize that what was available in Sweden was indeed limited.  He tackled this problem in two ways.  First by maintaining a large correspondence with a broad range of botanists and collectors throughout the world, and secondly helping to engineer collecting trips by some of his students and proteges.  He himself called them “apostles,” but in most cases they were less involved in proselytizing his taxonomic system and more committed to collecting new species to augment his massive work, Species Plantarum, his attempt to name and describe all known plants.

One of the first travelers for Linnaeus was Pehr Kalm (1716-1779), who studied at the University of Uppsala in the early days of Linnaeus’s professorship there.  They were both interested in useful plants that would strengthen Swedish agriculture, and Kalm studied economics with an eye toward this issue.  Canada seemed a particularly attractive area in which to search for new species, because it was at a similar latitude to Sweden.  In addition, Linnaeus was interested in obtaining more plants and information from two men in the British colonies, with whom he had already been in communication, John Bartram and Cadwallader Colden.  He and other professors managed to finance Kalm’s trip.  While spending several months in London waiting for transport, he visited Peter Collinson, a merchant and botanical enthusiast who had met Linnaeus several years earlier during the latter’s London visit (Blunt, 1971).  Kalm also went to the farm of another gentleman botanist, William Ellis, author of The Practical Farmer (1732). They discussed how weeds such as bracken could be useful within the economics of farming.  No trip to London for a botanist would be complete without a visit to Chelsea Physic Garden, and in his journals Kalm also noted plants in the fields and meadows he encountered on his walks.

Kalm finally reached Philadelphia in September 1748 with a letter of introduction from Linnaeus to Benjamin Franklin, who in turn connected him with John Bartram, a Philadelphia farmer and nurseryman.  Bartram had been sending seeds, specimens, and plants for several years to Peter Collinson from whom Linnaeus had received some Bartram material.  But of course Linnaeus wanted more, and Kalm was able to dispatch specimens and seeds.  He stayed with Bartram for a couple of days, examining his living collection and herbarium, and remained in the Philadelphia area until the following spring.  Most of his time was spent in and around a Swedish colony in Racoon, New Jersey.  The Swedish government had established it in the 1630s, and though it was taken over by the British after 20 years, residents in the area maintained Swedish traditions, yet today the town no longer exists.

In spring 1749, Kalm explored further north, visiting Cadwallader Colden in his home north of New York City.  Colden was interested in botany, had corresponded with Linnaeus, and welcomed Kalm’s visit.  While there, Kalm also met Colden’s daughter Jane, another plant enthusiast.  Robbins (1969) speculates that it might have been Kalm who encouraged her to begin work on her flora of the region, which she eventually produced with 300 of her own drawings.  From there, Kalm ventured farther north eventually reaching Montreal and then went on to Quebec.  In November he returned to Philadelphia by way of Albany and Saratoga.  On this trip he gathered watermelon, walnut, pumpkin, cotton, and early-ripening maize seeds which could possibly grow in Sweden (Juel & Harshberger, 1929).  Because he was thinking in terms of agriculture he was also interested in meteorology, kept weather records on his trip, and asked Bartram to also take readings in Philadelphia.

During the winter of 1749-50, Kalm married Anna Sadin, a Philadelphia widow.  In the spring he set out again traveling through western Pennsylvania and north to Niagara Falls, providing the first detailed account of the area and visiting the Iroquois who lived there.  This meant more specimen and seed collecting, and he packed up his materials back in Philadelphia in fall 1750.  He and his wife sailed to England in February, 1751 and arrived in Sweden in May.  He quickly distributed seeds for cultivation, and of course, visited Linnaeus who was thrilled with Kalm’s specimens.  In his 1753 Species Plantarum, Linnaeus describes 700 North American species, including 60 new ones that were collected by Kalm.  These included a species of Kalmia, a beautiful Ericaceae that its namesake had found in New Jersey. 

Kalm appeared to have made three collections of North American plants, one for Linnaeus which is now part of the collection at the Linnean Society, London, one for himself that was destroyed in a fire, and one given to Queen Lovisa Ulrika of Sweden for her support of his travels.  The latter specimens are now in the herbarium of the Museum of Evolution at the University of Uppsala (Lundqvist & Moberg, 1993).  Kalm spent the rest of his life teaching in Åbo, Finland.  In 1752 he published a journal of his travels which was translated into English, and also wrote several articles on agriculture for the Swedish Academy.  Unfortunately, none of the plants he grew from North American seeds were ever used in Swedish farming, and even the mulberry trees he tended as the first step in developing a Swedish silk industry eventually died.  His most lasting fame is in Kalmia and that is wonderful in itself.

References

Blunt, W. (1971). The Compleat Naturalist: A Life of Linnaeus. New York, NY: Viking.

Juel, H. O., & Harshberger, J. W. (1929). New light on the collection of North American plants made by Peter Kalm. Proceedings of the Academy of Natural Sciences of Philadelphia, 81, 297-303.

Lundqvist, S., & Moberg, R. (1993). The Pehr Kalm Herbarium in UPS, a Collection of North American Plants. Uppsala, Sweden: Uppsala University.

Robbins, P. I. (2009). Jane Colden: America’s First Woman Botanist. Fleischmanns, NY: Purple Mountain Press.

Linnaeus Beyond the Netherlands

4 Chelsea Garden

Chelsea Botanical Garden, London

This is the last of a series of posts about Carl Linnaeus’s three-year stay in the Netherlands and how it shaped his future career.  While there he had two opportunities to travel to other parts of Europe and meet leading botanists of the day.  It was while living on the estate of George Clifford at Hartekamp and working on cataloging his collection (see last post), that Linnaeus took time off for a month in England to look into what he had heard to be a vibrant botanical community there.  Clifford agreed to this hiatus and even financed it, with the stipulation that Linnaeus return with new plants for his estate.

Not surprisingly, Linnaeus first visited Hans Sloane, then an aged icon among collectors, who opened his herbarium to the Swede.  Jan Frederik Gronovius had already sent Sloane a copy of Linnaeus’s Systema Naturae, and Herman Boerhaave wrote a letter of introduction in which he put Linnaeus on a par with Sloane, describing them as “a pair of men whose equal is hardly to be found in all the world” (quoted in Blunt, 1971, p. 110).  Sloane didn’t quite see things that way and didn’t pay that much attention to Linnaeus who later described Sloane’s herbarium as disorganized.  His first meeting with Philip Miller, the head of the Chelsea Physic Garden, was also less than a success, but eventually Miller gave Linnaeus a good selection of plants to take back to Clifford, as well as herbarium specimens that William Houston had collected in Central America.

In London, Linnaeus met another key member of the botanical confederacy, Peter Collinson, who had already begun a long-term correspondence with John Bartram, the Philadelphia naturalist and nurseryman.  Over a 30-year period, Bartram sent a large array of specimens, seeds, and cuttings to Collinson, who in turn distributed them to a number of the leading gardeners of the day who were anxious to have the latest finds from North America.  Collinson got along well with Linnaeus, and they continued to correspond over the years, with Linnaeus examining some Bartram specimens that thus became types for Linnaean species.  Linnaeus must have met up with Georg Ehret in London, since the artist wrote that he had given him plates to finish Clifford’s catalogue.  In addition, John Martyn, a professor of botany at Cambridge and a London physician, was impressed enough with Linnaeus that their meeting led to a regular correspondence.

Linnaeus also managed time for a trip to Oxford where Johann Jacob Dillenius was professor of botany.  As with several other Linnaean first meetings, this one did not go well because Dillenius had read some of Linnaeus’s early publications, and he felt they threw botany into confusion.  After a few frosty meetings, they finally reconciled when Linnaeus showed Dillenius that he was wrong about his description of the genus BlitumThen Dillenius finally appreciated the depth of Linnaeus’s knowledge, and they had a lively conversation and continued to correspond afterwards.  Obviously Linnaeus’s time in England was very fruitful and provided him with several important contacts who would continue writing to him with information for years to come.

When Linnaeus left Hartekamp in fall of 1937 after finishing the catalogue that would become Hortus Cliffortianus, he went back to Leiden and spent the winter there, working with Adriaan van Royen in the botanic garden, classifying plants according to his sexual system (Rutgers, 2008).  In the spring, he started out for his return to Sweden by going in the opposite direction, to Paris, to visit the famous Jardin des Rois where he met the de Jussieu brothers.  Antoine was older, a professor of botany at the Jardin and a physician; he was a busy man.  He had one meeting with Linnaeus and introduced him to Bernard who then served as his guide.  Bernard de Jussieu showed him the herbarium, and they went through Joseph de Pitton Tournefort’s specimens, a broad collection that included plants from his voyages to the Middle East as well as to the Caribbean area.

Linnaeus also worked in the Jardin’s botanical library, where there were many books of which he had been unaware.  He prepared a ‘wish list’ and later procured a number of these titles.  At the Jardin, he met two of the most accomplished botanical artists of the day, the elderly Claude Aubriet, who had worked with Tournefort, and his pupil Françoise Madeleine Basseporte.  Aubriet showed Linnaeus the large collection of paintings of plants in the Jardin done over the years, so again, as with the time he spent with Georg Ehret, Linnaeus developed a taste of what the best botanical art looked like.  Paris allowed him to deepen still further his knowledge of botany in terms of specimens, living plants, books, and art.  All these were to figure in his future work, and he left for Sweden having made the best possible use of his three years away from home.  Those who read the first post in this series might remember that Linnaeus’s journey had in part been urged upon him by his future father-in-law who agreed to his daughter’s engagement only with the proviso that there be a three-year hiatus in their relationship.  Having fulfilled the agreement, Linnaeus was still an ardent suitor, and when he got back to Sweden, plans for the wedding proceeded.

References

Blunt, W. (1971). The Compleat Naturalist: A Life of Linnaeus. New York, NY: Viking.

Rutgers, J. (2008). Linnaeus in the Netherlands. TijdSchrift Voor Skandinavistiek, 29, 103–116.

Linnaeus in the Netherlands: George Clifford

3 Clifford Hypericum androsaemum

Hypericum androsaemum from the Clifford Herbarium, courtesy of the Natural History Museum, London

As I mentioned in the first post in this series, Carl Linnaeus had just begun work with Johannes Burman at the Leiden Botanic Garden when George Clifford (1685-1760) asked Linnaeus to write a catalogue of the plants in his garden at Hartekamp, near Haarlem in the Netherlands.  It took some convincing for Burman to release him, but it ended up well for Linnaeus.  He spent over two years at Hartekamp, where he had available to him a large collection of tropical plants from around the world.  Linnaeus had already sketched out his Systema Naturae (1735) before he left Sweden, but his knowledge of plant diversity was limited to northern Europe.  Then he met Jan Frederik Gronovius, who had studied plants that John Clayton had sent him from Virginia and Burman, who had Paul Herman’s specimen collection from Ceylon (now Sri Lanka).  His horizons were broadening (see last post).

Clifford was a wealthy Dutch financier and a director of the Dutch East India Company (VOC) that oversaw a worldwide shipping organization making the Netherlands a mercantile power.  From the VOC’s creation in 1602, its captains and ship surgeons were given directions on how to make collections and transport specimens, seeds, bulbs, and cuttings back home.  The more exotics that reached home, the more the Dutch became avid gardeners hungry for still more plant novelties.  Because of his position, Clifford had first dibs on the plants that arrived in Holland, and he had the interest and knowledge to appreciate them.  To give a sense of the scope of his collection, he had four greenhouses, one each for plants from Europe, Asia, Africa, and the Americas.  At this time, gardening and sophisticated plant collecting were status symbols for the elite; Clifford’s Hartekamp was obviously a premier example.  Even his herbarium specimens reflected his status.  The sheets had elaborately printed labels, and the cut end of each plant was covered with a printed urn (Thijsee, 2018).  This became a fad at the time among the rich and botanically sophisticated (see figure below).

Among the living plants in Clifford’s unique collection was a banana tree, which was growing well but had never blossomed or produced fruit.  Linnaeus gave it special attention and took credit for inducing it into flower in four months with a regimen of restricting watering, and then watering generously.  This was one of the first times this feat had been achieved in Europe and was so noteworthy that Linnaeus wrote a short book on the plant, and Clifford had it published (Rutgers, 2008).  This added luster to both their names; it also indicated Linnaeus’s skills with living plants as well as with identifying specimens.

Another important event during this time was the arrival of the German artist Georg Ehret at Hartekamp in 1736.  Ehret had already produced a large portfolio of botanical watercolors for several patrons, none of whom paid very well.  He had come to the Netherlands after doing some work in England and called on Clifford in the hope of finding further employment.  Clifford was indeed interested in Ehret’s work and even paid his asking price for a number of paintings.  Ehret remained at Hartekamp for a month, working on illustrations for Clifford’s catalogue.  Linnaeus explained to Ehret his plant classification system based on the reproductive structures in flowers.  He had worked out 24 classes simply by counting the number and arrangement of the stamens or pollen-producing male organs, with the 24th class reserved for those without visible stamens.  Within each class were subclasses depending up on the number of female organs.  The beauty of the system was its relative simplicity, grounded in traits that were usually visible and countable.

Ehret illustrated the system with a chart that has become famous, a simple visual representation of the 24 classes (see figure below).  He published it shortly after leaving Hartekamp and Linnaeus also published it much later, but not crediting Ehret.  Working in close proximity together, even for a month, must have been important to them both during this early formative period in their careers.  Ehret, who had already developed the practice of dissecting flowers and illustrating their parts, often with magnification, learned from Linnaeus the pivotal importance of these structures in identifying species.  On the other hand, Linnaeus was able to see the artistic and intellectual work that went into creating first-rate botanical art.  In their book Objectivity, Lorraine Daston and Peter Galison (2007) write of four-eyed sight, which results from an artist and a scientist working and looking together, resulting in an image that satisfies both.  Linnaeus and Ehret could very well have collaborated in this way.  After he left Hartekamp, Ehret had a long career in England producing illustrations for many major botanical works including those of Philip Miller and Christoph Jacob Trew, who had been an early patron of Ehret’s in Germany.

3 Ehret
Georg Ehret’s diagram of Carl Linnaeus’s classification system, courtesy of the Biodiversity Heritage Library

Most of the illustrations in the Clifford catalogue were done by Ehret and the remainder by Jan Wanderlaar, who also engraved the plates.  It took Linnaeus nine months to write the text (Blunt, 1971).  The species descriptions were organized according the classification system Linnaeus had laid it out in his Genera Plantarum, which was also published during this time (1737).  While he was in Hartekamp, he published early versions of other works as well.  Clifford also afforded him the time and the resources to become better educated in botany.  Besides his herbarium and garden, Clifford also had a substantial library, with all the leading botanical references of the day.  Hartekamp must have been a difficult place to leave.  However, after spending almost three years in the Netherlands, Linnaeus’s thoughts were of Sweden.  Yet he didn’t go directly home.  His further wanderings will be examined in the next post.

References

Blunt, W. (1971). The Compleat Naturalist: A Life of Linnaeus. New York, NY: Viking.

Daston, L., & Galison, P. (2007). Objectivity. New York: Zone.

Rutgers, J. (2008). Linnaeus in the Netherlands. TijdSchrift Voor Skandinavistiek, 29, 103–116.

Thijsse, G. (2018). A contribution to the history of the herbaria of George Clifford III (1685–1760). Archives of Natural History, 45(1), 134–148.

Linnaeus in the Netherlands: Mentors

2 Claytonia virginica

Specimen of Claytonia viriginia collected by John Clayton, courtesy of the Natural History Museum, London.

In the last post, I outlined the early days of Linnaeus’s three years of travel (1735-1738) and mentioned his early meetings with Herman Boerhaave, a physician and retired director of the Leiden botanic garden, and Jan Frederik Gronovius, a botanist with a large herbarium.  Linnaeus was much younger than them, and he learned a great deal from both, especially because they allowed him to study their specimen collections.  So they deserve more attention in this series of posts on Linnaeus’s travel experiences (Blunt, 1971).

For many years, Herman Boerhaave taught medicine at the University of Leiden and elevated the institution’s stature.  He then headed the university’s botanical garden and worked to increase its holdings of exotic plants.  He was aided in this by his contacts with the Dutch East India Company ( VOC), one of the leaders at the time in trading with Asia.  Following company instructions, surgeons and captains on VOC ships brought back cuttings, seeds, and specimens of plants they encountered on their travels.  Boerhaave was able to add many of these to his garden and herbarium, four volumes of which are now in the Sloane Herbarium at the Natural History Museum, London.  In addition, he published descriptions of new species and built on the work of botanists such as John Ray and Joseph de Pitton Tournefort in attempting to develop a natural classification system (Rutgers, 2008).  It is no wonder that with this background Boerhaave appreciated what Linnaeus was attempting to do with his Systema Naturae, which he had already sketched out by the time he went to Leiden.

Jan Gronovius was a student of Boerhaave’s.  He was an avid specimen collector and kept up a wide correspondence with naturalists in Europe and beyond.  It was through this network that he obtained John Clayton’s specimens from Virginia (see figure above).  Clayton became interested in botany and plant collecting after meeting Mark Catesby on his second trip to the American Southeast collecting for what became the impressive The Natural History of Carolina, Florida, and the Bahama IslandsAfter Catesby returned to England, Clayton shipped him specimens, which Catesby then passed on to Gronovius.  Eventually Clayton sent specimens and letters directly to Gronovius.

At this time, “sending a letter” across the Atlantic could mean waiting months to a year or more for a response, if indeed a response ever came.  Also at that time there was great interest in North American plants and not only because of their novelty.  Since the climate there was temperate as was that of Europe, species were more likely to acclimatize well and could be introduced into gardens.  Wealthy landowners were clamoring for the latest novelties, and botanists wanted to be the first to describe new species.  This helps to explain why Gronovius published a book, Flora Virginica, based on Clayton’s manuscript and specimens without letting him know about it ahead of time and gaining his permission.  This sounds rather dubious, but he did credit Clayton with finding the plants and sending him information on them along with the specimens.  Also, later observers have noted that because Gronovius was so well connected, his publication likely made Clayton’s work more broadly known than if Clayton himself had written on them.  As a case in point, Gronovius allowed Linnaeus to study the Clayton specimens, and so they became type specimens for a number of the North American plants Linnaeus described in Species Plantarum.  Linnaeus spent the winter of 1737-1738 with Gronovius right before returning to Sweden.  They worked on Clayton’s 1737 shipment of plants, to which they gave Linnaean names, a very early use of his system.

Gronovius was also in touch with another American botanist, John Bartram in Philadelphia.  They were originally connected by Bartram’s patron in England, Peter Collinson, another adept networker.  Bartram sent material to Gronovius, who again allowed Linnaeus to examine it.  This was later than with the Clayton material; Linnaeus by then had his long-term academic position in Uppsala and the two sent packages of specimens back and forth between them.  Eventually Gronovius and Bartram corresponded directly, as did Gronovius and Cadwallader Colden, a New York naturalist whose daughter Jane Colden was also involved in botany and produced an illustrated manuscript on New World plants (Colden, 1963).

One last name that should be mentioned as a Linnaean mentor is someone of his own age whom he had worked with while studying at the university in Uppsala.  There they planned to develop a system to organize all living things.  They divided up different groups between them.  For example, Linnaeus opted for most of the plants, and Peter Artedi selected fish and the Brassicaceae as among his favorites.  Finishing their studies, they went their separate ways, then met by chance in Amsterdam and took up where they left off.  Unfortunately, Artedi soon drowned in one of the city’s canals.  Linnaeus saw to the publication of Artedi’s manuscript on fish, and the approaches they developed to classification greatly influenced Linnaeus’s future work.  This is one of those cases where it’s interesting to speculate on what they would have achieved if they had been able to work together for years.

While the three individuals discussed here were important to Linnaeus’s career, it could be argued that the most important individual of his Netherlands sojourn was George Clifford with whom Linnaeus lived and worked for over two years.  Clifford will be the subject of the next post.

References

Blunt, W. (1971). The Compleat Naturalist: A Life of Linnaeus. New York, NY: Viking.

Colden, J., Rickett, H. W., & Hall, E. C. (1963). Botanic Manuscript of Jane Colden, 1724-1766. New York: Garden Club of Orange and Dutchess Counties.

Rutgers, J. (2008). Linnaeus in the Netherlands. TijdSchrift Voor Skandinavistiek, 29, 103–116.

Linnaeus in the Netherlands

 

1 Systema Naturae

Title page of Carl Linnaeus’s Systema Naturae (1735), courtesy of the Biodiversity Heritage Library.

There is a great deal of talk about the European Union these days, and the advantages of open travel among nations.  Freedom of movement is a wonderful concept in any age, and it’s one experienced by Carl Linnaeus (1707-1778) when he was in his late 20s.  Having completed his education in Uppsala, Sweden and having become engaged to a woman whom he very much desired, he set out for three years of study and travel.  This wasn’t entirely his own idea.  His future father-in-law was not thrilled with his daughter’s beloved, a physician with few financial resources, so he would only bless the match by having Carl agree to a three-year hiatus.  Linnaeus might not have been a man of means, but he was a man who had already learned a great deal about botany and had developed original ideas about how plant diversity should be organized.  He also had some experience of travel having spent a few months exploring Lapland, the northern reaches of Scandinavia.  So in 1735 he took his manuscripts, packed his bags, and headed to the Netherlands, traveling through Germany on the way.  His experiences in Holland and elsewhere in Europe did a great deal to form his ideas and shape his career.  This series of posts will look at some of those influences (Blunt, 1971).

It seems that Linnaeus did not make a good first impression on many people.  There are a number of stories about men who were put off by his self-possessed manner, and then, as they realized what a good mind lurked behind the bravado, became good friends with him.  This was the case with Johannes Burman, a professor of botany and director of the Amsterdam botanic garden.  Burman, who was the same age as Linnaeus, had been at the garden for several years working on the Flora of Ceylon, using primarily the herbarium of Paul Hermann, who had collected there in the 1670s.  After this brief meeting where Burman was unimpressed by Linnaeus, it would probably have been difficult for either of them to predict that they would be lifelong friends.  At this time Linnaeus also visited Albertus Seba who had amassed a large cabinet of curiosities including materials he collected on trips to the East and West Indies.  During these years the Netherlands was an important naval power with far-flung mercantile interests, so along with trade goods—like spices and silks, exotic plants, animals, and artifacts also poured into Dutch ports.  Even though Seba had sold his original massive collection, he was able to build another and showed some of it to Linnaeus on two visits to his home.  He later asked Linnaeus to assist him in preparing a book he was writing on his holdings, but by then the Swede had made other connections (Rutgers, 2008).

Linnaeus next spent two weeks in Harderwijk, the site of a university where for a week’s residency he qualified as a doctor, submitting a thesis he had written in Sweden.  Then he went to Leiden and showed his manuscript of Systema Naturae to the Dutch botanist Jan Frederik Gronovius, who was so impressed with the work that he arranged for its immediate publication as a thin volume of 14 pages that set out the rudiments of Linnaeus’s taxonomic system.  Gronovius also gave him a letter of introduction to Herman Boerhaave, who had retired as head of the Leiden Botanic Garden.  As with Burman, their relation did not begin smoothly, but eventually Boerhaave appreciated Linnaeus’s intelligence and energy.  However, none of these meetings landed him a position where he could earn enough money to allow him to remain in the Netherlands.  He told them that he would have to return home.  That’s when Boerhaave offered to fund a trip to Cape Town, South Africa which was then under Dutch control and was proving to be a botanically rich area.  Linnaeus, however, after his Lapland expedition, did not much relish a long journey with many probable hardships; Sweden was a safer and easier option.

There are more twists to this story.  On his way home, Linnaeus stopped in Amsterdam and again visited Burman, this time with a letter of introduction from Boerhaave.  Burman paid more attention to his visitor, especially after Linnaeus was able to identify a rare plant Burman showed him.  The latter offered to pay Linnaeus for helping to prepare the Flora of Ceylon, and also convinced him that he should definitely call on George Clifford, a wealthy merchant and horticulturalist who lived near Haarlem.  Clifford and Linnaeus got on well because Linnaeus identified many of his hosts’ Indian plants and was sorely tempted by Clifford’s offer to live and work on his estate, with access to his garden and herbarium.  But Linnaeus was committed to Burman.  In the end, Burman and Linnaeus visited Clifford, and Burman agreed to free Linnaeus if Clifford would give him a very desirable book displayed in his library: the second volume of Hans Sloane’s Natural History of Jamaica.  Clifford and Linnaeus were both very fortunate, with the gardener/financier getting an expert to bring order to his collection of specimens, properly name his plants—those in the herbarium and those in the garden—and help in producing a catalogue to make public his botanical treasures.  Linnaeus, on the other hand, was freed of economic worries, had a very comfortable place to live, and great resources to work with, including a first-class library.  What happens then will be the subject of a later post.

References

Blunt, W. (1971). The Compleat Naturalist: A Life of Linnaeus. New York, NY: Viking.

Rutgers, J. (2008). Linnaeus in the Netherlands. TijdSchrift Voor Skandinavistiek, 29, 103–116.

Books Old and New, Part 4: Gods of Nomenclature

4 Gods

University of Chicago Press, Chicago. (2008)

As I was packing books for my move, which was the impetus for this series of posts on books (1, 2, 3) I’ve acquired in the past and more recently, I came across excellent books by the St. Louis University botanist, Peter Bernhardt.  The first was Wily Violets and Underground Orchids (1989) that drew on his general knowledge of botany and also on his orchid research, particularly in Australia.  Then came Natural Affairs (1993) on relationships between plants and humans and The Rose’s Kiss (1999) that dealt with flower structures and how they function, particularly in luring pollinators.  All these books made the cut and are now safely on bookshelves in my new home, though I couldn’t tell you their precise location—there is little order to the collection at the moment.

The latest Bernhardt book for the general reader is God’s and Goddesses in the Garden: Greco-Roman Mythology and the Scientific Names of Plants (2008).  This too made the trip and is the one I most wanted to reread.  I’ve done that now and want to share some of its gems with you.  This is probably the most technical of Bernhardt’s books because of its topic.  In order to make his point that the names of plants are in many cases as fascinating as the organisms themselves, he introduces the basics of taxonomy and botanical nomenclature—and of mythology as well.  Because he is such a good writer, Bernhardt does this admirably.  I may be prejudiced in his favor since he begins the first chapter with a section called “Inside the Herbarium.”  He starts with a passage from Ovid’s Metamorphosis in which the poet quotes the one-eyed mythic monster the Cyclops on the fruits growing in the garden and why it’s impossible to give precise scientific names to some of them, particularly the plums.  It would be necessary to have more information, and ideally a voucher, a herbarium specimen of the plant cited.  That’s Bernhardt’s clever segue into the importance of scientific names as the only way to be sure of what a writer is really talking about.

Next comes, not surprisingly, a section on Linnaean nomenclature, where Bernhardt not only explains the basis of binomial nomenclature and why it was so needed, but also describes how Carl Linnaeus is responsible for so many of the mythological plant names.  Linnaeus was not exactly a new Adam, although he has sometimes been described this way.  While every scientific plant name used today dates from 1753, the date of publication of his Species Plantarum, or later, he didn’t begin with a totally clean slate.  He adapted many plant names that had long been in use, which is why names in 16th and 17th-century herbals often seem familiar.  However, he still had to supply many new genus names, and for this he chose to rely on Greco-Roman mythology.

Where plant names come from is the subject of Bernhardt’s second chapter.  He begins with the easiest category, plants named after people, real people not mythological ones.  Some genus and particularly species names are given to honor a noted botanist, though at times the honor is bestowed on a statesman, a spouse, or even a celebrity:  Lady Gaga has a fern genus named after her.  Also common are species names derived from geographical locations where the plant was found.  Then there are the descriptive names, telling something about the plant, such as that it has glossy leaves or a large flower.  While these may be used for either genera or species, most classical names designate genera.

How did Linnaeus choose names from myth?  The answers provide the heart of Bernhardt’s book.  After the two introductory chapters, he starts each of the following with a brief exposition of a classical myth, including the names of the characters and what happens to them.  Then he describes how these names have ended up associated with plants.  He begins with the Greek creation myth related by the poet Hesiod in which day and night are given names, with night called Nyx.  This explains Nyctaginia or night blooming flower and Nyctocalos, beautiful at night.  In some cases the names have less straightforward allusions, as with the banana genus Musa.  This is an Asian plant, but it was Arab traders who brought it to the West, and Linnaeus is referring to that connection in the name.  Also, Muslims call bananas trees of paradise, so Linnaeus named the common banana of the time Musa paradisiaca and even wrote a book about it in 1736.  In regaling the reader with these stories, Bernhardt notes that some of the most intriguing names are no longer botanically accurate because of nomenclatural changes.  Since many of these names were given by Linnaeus, it stands to reason that over the years more and more of them will fade due to name changes for taxonomic reasons, despite their beauty and ingenuity.

This is a book that is best dipped into rather than read straight through.  It’s extremely rich in names, stories, and plant information, and might cause intellectual indigestion if experienced in high doses.  However, for anyone who loves plants, it’s definitely worth reading because it fosters an appreciation for botanical nomenclature which often seems unwieldy to say the least.  Bernhardt’s book may even drive you to other sources on the subject such as Stearn’s Botanical Latin (1992) and Lorraine Harrison’s Latin for Gardeners (2012).

References

Bernhardt, P. (1989). Wily Violets and Underground Orchids. New York: William Morrow.

Bernhardt, P. (1993). Natural Affairs: A Botanist Looks at the Attachments between Plants and People. New York: Villard.

Bernhardt, P. (1999). The Rose’s Kiss: A Natural History of Flowers. Chicago: University of Chicago Press.

Bernhardt, P. (2008). Gods and Goddesses in the Garden: Greco-Roman Mythology and the Scientific Names of Plants. New Brunswick, NJ: Rutgers University Press.

Harrison, L. (2012). Latin for Gardener’s. Chicago, IL: University of Chicago Press.

Linnaeus, C. (1736). Musa Cliffortiana. Leiden, The Netherlands.

Stearn, W. T. (1992). Botanical Latin (4th ed.). Portland, OR: Timber Press.

Specimen Labels: History

aldrovandi-1561

Specimen from the Ulisse Aldrovandi Herbarium at the University of Bologna

It’s often noted that herbarium specimens are prepared today much as they were in the 16th century when Luca Ghini (1490-1556) created the first well-documented herbarium. This lack of “progress” is because the original approach was both easy and effective: press a plant between two pieces of paper to absorb moisture and to flatten it. Plant material treated in this way can last indefinitely. Moisture encourages the growth of fungi and other agents of decay, and pressing means the plant doesn’t curl up into an irregular mass as it dries. Today, the sheets of paper may be interleafed with felt pads and cardboard sheets to hasten drying. After this the specimen is mounted on heavy white paper and labeled. It is in the labeling that significant changes have occurred over the years and continue to occur. To put it simply, the amount of information on a sheet has increased significantly, but even today, there is no “perfect” label, no standard for what be included and in what format. This may not seem like a very exciting topic to pursue, but I hope to show that following the label story tells a great deal about the history of plant collections and of plant science itself.

Ghini’s herbarium is not extant, but those of his students, Gherardo Cibo (1512-1600) and Ulisse Aldrovandi (1522-1605) are (Nepi& Gusmerol, 2008). They are beautifully mounted, and on the latter, the plant names are written in script. There is little other notation, and this is true of most early specimens. Since herbaria were created either by or for individuals, it can be assumed that these owners knew more about the plants, could fill in the blanks, at least for many of the specimens. They felt the name was all the information they needed; there were books with species descriptions that could be referenced. However as Brian Ogilve (2006) notes, at this time the written information on plants lagged behind the illustrations and plant specimens then available. This was one of the driving forces behind the creation of herbaria: to have good visual information available for study. Plants themselves were studied first for their uses in medicine, and then as fascinating in themselves, opening the way to plant taxonomy. Geography or date of collection wasn’t considered important, nor was the name of the collector.

As time went on, labeling and specimen preparation became more standardized, but still, collections were for the most part individual rather than institutional so personal idiosyncrasies were common. This was especially the case among the wealthy who saw a herbarium as an important element of a cabinet of curiosities and a significant symbol of status. A case in point is the herbarium of George Clifford (1685-1760), which was studied and augmented by Carl Linnaeus during his time in the Netherlands. Clifford was a wealthy banker with an interest in gardening and wanted to document the range of plants he grew. Each sheet had an ornately bordered label and the bottom of the stem was covered by an engraving of a vase from which the plant was seemingly growing. In other collections, the pages were framed with a border of inked lines. The Oxford botanist Johann Dillenius (1684-1747) pasted thin strips of wallpaper around the edges of his moss specimen sheets to strengthen them. On the other hand, Hans Sloane (1660-1753) who had one of the largest pre-Linnaean herbaria, didn’t use any such devices, unless the specimens he was given or that he purchased came with them, as in the case of the herbarium of Mary Somerset, Duchess of Beaufort (Laird, 2015). He simply had the sheets mounted in volumes, 265 of which still exist in the Natural History Museum, London.

Binding was another common herbarium practice of the past that has disappeared. Carl Linnaeus (1707-1778) kept his specimen sheets loose so that he could easily organize—and reorganize—them. He had a wooden cabinet constructed for his collection, and his strategy is still used today. One of his practices that hasn’t continued is writing on the back of the sheet. This is now frowned upon because accessing the information means turning over the specimen, which can lead to plant fragments falling off. Loss of fragments still occurs; this is why many sheets prepared today have a folded paper envelope attached in which any such debris can be saved. After his death, Linnaeus’s collection was sold to Edward Smith and formed the basis of the Linnean Society herbarium in London. However, other such collections were either discarded by uninterested heirs or found their way into university, botanical garden, or museum collections. Often they were just stored as they were, so the idiosyncrasies remained.

References
Laird, M. (2015). A Natural History of English Gardening 1650-1800. New Haven, CT: Yale University Press.
Nepi, C., & Gusmerol, E. (2008). Gli erbari aretini da Andrea Cesalpino ai giorni nostri. Florence, Italy: Firenze University Press.
Ogilve, B. W. (2006). The Science of Describing: Natural History in Renaissance Europe. Chicago, IL: University of Chicago Press.